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What has foam in common with granular matter? What can these two
active research fields learn from each other, where do they overlap?
We approach these questions by reviewing a wide range of foam the-
ory (mostly simulation) and experiment, set in the context of granular
matter research.

1. Introduction

1.1. History of foam research

Foam and soap film research goes back to the dawn of modern science
(Leonardo da Vinci,?® Robert Boyle!2?). In 1873 the blind Belgian scientist
Joseph Plateau published his masterful account of his own researches and
the subject’s previous history.”™ Many of those older references are also to
be found in the classic work of Mysels et al. on soap films.”!

Later Lord Kelvin took an interest in the subject.’® The almost-
simultaneous preoccupation of Kelvin with foams and Reynolds with gran-
ular media™ drew motivation from the same source: the structure of the
ether. This was the all-pervading medium that 19th century physics re-
quired for the propagation of light waves. Remarkably, the same question
re-emerges today in modern form (the structure of space-time on the Planck
scale) and theorists in that subject use granular and foam language inter-
changeably!

Foam structure, as first elucidated by Plateau, may be visual-
ized/analysed from different perspectives, depending to some extent on the
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Fig. 1. From left to right: 1D foam consisting of regularly spaced parallel soap films
(bamboo foam);?? 2D foam confined between two glass plates; 3D foam (the vertical
gradient in liquid fraction is due to gravity-driven drainage).

wetness (liquid volume fraction) :

e a packing of bubbles

e a tessellation of cells

e a partitioning of space by films

e a network of lines (Plateau borders)

vertex or node /
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4 Plateau borders

Fig. 2. Elements of foam structure: from left to right, packing of bubbles; partitioning
of space by films: the Weaire-Phelan structure; network of Plateau borders.

It is simpler in two dimensions, as Cyril Stanley Smith explained,3* but
the two-dimensional (2D) system brings its own complications. For a start
there are (at least) three varieties of ordinary 2D soap froths, as represented
in Figure 3:

e Hele-Shaw cell : one layer of bubbles confined between two plates;33
e Plate/liquid: the bubbles float in liquid under a plate;>>8
o Free-floating bubbles.'*
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Fig. 3. Three types of 2D foams. From left to right: air bubbles confined between two
glass plates; bubbles floating in liquid under a glass plate; monolayer of bubbles sitting
at an air/liquid interface.

Note the contrast between the Bragg and Smith systems. Both were used to
model grain growth in atomic crystals, but Bragg’s monodisperse bubbles,
small enough to be roughly spherical, represent individual atoms, whereas
Smith’s large polydisperse bubbles represent whole grains. Many foam

Fig. 4. Left: Smith’s crystalline model®® . Right: Bragg’s bubble raft.!4

experiments have been conducted with bubbles of diameters of a few mil-
limetres (see 2.2). The effect of gravity is diminished for bubbles much
smaller than the capillary length (about 1.6 mm for ordinary surfactants).
Old ideas of how to make them monodisperse have been revived®® and are
of great interest in microfluidics.3°

1.2. Space and time scales

Three different length scales are pertinent in foam physics:

e the scale of the films where the physico-chemical properties of the
stabilizing surfactants strongly influence the forces that determine
dynamic properties of the foam;

e the scale of the individual bubbles, ruled by mechanical equilibirum
of the films;
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e the scale of the foam: smoothed continuum models can be built to

model the foam as a non-newtonian fluid.2349

surfactant molecules Geometry dictated by
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Fig. 5. The three length scales: from left to right, a film of surfactant solution, an
ensemble of bubbles, foam as a continuous medium.

Most phenomena take place on very different time scales as well. Typically
they are as follows:

e structural relaxations: a fraction of a second,

e drainage to equilibrium under gravity: a few minutes,

e coarsening, due to diffusion of gas: many minutes up to several
hours.

These different timescales are very convenient in separating effects in exper-
iments. The properties of general interest include those that are essentially
static or can be described quasi-statically, like structure, stability, elasticity,
coarsening, quasistatic rheology, light scattering, electrical and thermal re-
sistance. Increasingly, properties that are truly dynamic are addressed, in-
cluding details of transformations and structural relaxation, rate-dependent
rheology, drainage, convective instability, size segregation. The stability of
a foam in relation to film rupture depends crucially on the chemistry of the
foaming solutions. Common detergent foams are remarkably stable against
film rupture, over periods of days, and are ideal for the study of many
generic foam properties.

Theory is sometimes complicated by the history-dependence of foam
structure and hence its properties. Coarsening due to the diffusion of gas
through the liquid cell walls eventually results in a foam whose average
bubble diameter varies with the square root of time. However, the statistical
properties of the bubble packing, such as the average number of faces per
cell, remain the same.??3% The unique polydisperse system reached after
a long period of coarsening (the scaling state) is thus a useful choice for a
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standard system, to avoid the arbitrariness of samples otherwise created.

Almost all of the above properties have closely equivalent counterparts
for granular materials, so each field can be illuminated by the other. Is there
a closer correspondence? Should we regard a gas bubble as a frictionless,
compressible particle? Durian?® and others have tried to integrate foam
theory with granular and atomic systems, by using a single idealised model
for all three, as we shall explain below. Do foams offer any advantages
to those interested in exploring generic properties of disordered systems?
There may be some. In particular, foams have relatively well-defined and
understood local structure and interactions. There is no solid friction, al-
though there may be equally problematic Marangoni effects. Laboratory
equipment can be rudimentary: glass plates, tubing, simple air and water
pumps. High speed video with sophisticated image analysis is becoming
common, but direct measurements may still be performed to great effect.
Besides, many foams are partially transparent, so that some limited obser-
vation of their interior is possible.

1.3. Key physical parameters

The key physical parameters describing an ordinary aqueous foam include
those that characterize the liquid and its surface:

e surface tension: in practice, its value is usually less of that for pure
water (surface tension y ~ %ywater ~ 24mN/m is often a good
estimate). Many expressions for pressures, forces, energies, elastic
moduli, yield stress are proportional to . In simple theories this is
often the only parameter of interest and hence tends to disappear
entirely in simulations.

e bulk viscosity: it has been considered to control drainage and struc-
tural relaxation, but this is now questionable in some cases.

e surface properties, such as surface viscosity and elasticity, are of
great importance but are difficult to capture in simple formulae.
Their role has been studied by physical chemists for a long time
but are only now being properly integrated into foam physics.

e a parameter that characterizes the permeability of films: it depends
on the choice of gas and may be greatly reduced by an appropriate
choice, in order to control coarsening by reducing the permeation
of films.

Further basic parameters characterise the foam structure:
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e the average bubble diameter d (or some other measure of size);

e the liquid fraction ¢ (often a function of position), which tends to
zero in the limit of a dry foam;

e topological measures such as po, the second moment of the dis-
tribution of the number of sides in a two-dimensional foam. This
measures the spread of different types of cells (roughly correspond-
ing to polydispersity), and crops up in various theories.

How can we access quantitatively these structural parameters in prac-
tice? We might squash and two-dimensionalise a three-dimensional (3D)
foam sample between two plates, in order to estimate d. It is also possible
to infere to some extent the size distribution in the bulk from what is ob-
servable on the sidewalls. To measure the liquid fraction ¢, we may weigh a
sample, or use light scattering, electrical resistance, gamma ray absorption
or Archimedes Principle. As for granular media, the complete structure
can also be accessed by tomography techniques (see section 5).

Remarkably, a lot of physics can be developed in terms of these few vari-
ables (leaving out surface viscosity and surface elasticity, if possible), after a
few simplifying approximations. Foam physics is remarkably coherent and
tractable at the level of ten percent accuracy, but becomes cluttered and
obscured by a multitude of small effects if more precision is pursued. Most
of the basic formulae that roughly capture physical properties can be found
in the book of Weaire and Hutzler.”> A fuller appreciation of the present
breadth of the subject may be gathered from the proceedings of the last
EUFOAM Conference in Potsdam,%® or proceedings of previous European
Foams Conferences.”>1%! The next is to be held at Nordwijk in 2008.

1.4. Wet and dry foams

The value of liquid fraction in a disordered foam can range between 0 (cor-
responding to an ideal polyhedral packing of bubbles) and approximately
0.36, where the latter value is the void fraction of a random packing of hard
spheres (in two dimensions the equivalent value is approximately 0.16). If
we call a foam wet if its (local) liquid fraction exceeds half of this value,
the following estimate can be deduced for the thickness of the layer of wet
foam lying on a pool of liquid,®

Wiet, > b (1)
wet — d
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where [y is the capillary length, given by Iy = ,/;—g ~ 1.6mm for usual

surfactants (v is the surface tension, p is the density of the liquid, g is the
acceleration due to gravity). The number of bubble layers in a wet foam

Fig. 6. An illustration of the gradient of liquid fraction. Here P is less than 5. (Photo-
graph by J. Cilliers, Imperial College London).

under gravity is thus given by dividing Wy, by d and we shall define this
here as the dimensionless Princen number

P (%) @)

in honour of the late Henry Princen, pioneer of foam drainage and rheology.

In the wet limit, a foam can be considered as a immersed granular
material, with the differences that the grain weight is replaced by bubble
buoyancy, and that the bubble surface is more deformable. On the other
hand in the dry limit the foam can be seen as ai tessellation, rather like the
Voronoi tessellation of a granular material.

1.5. Emulsions

Emulsions that have comparable structural scales to those of typical foams
behave quite similarly, and may be termed bi-liquid foams. For static prop-
erties, replacing gas by liquid and bubbles by droplets changes little apart
from the terminology. Of course, there are bound to be some important dif-
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ferences in dynamic properties, wherever the viscosity of the enclosed liquid
is significant. This is noticible in particular in so-called forced-drainage ex-
periments, where the continuous phase is continuously replenished to avoid
a drying out of the foam or emulsion.”” Whereas in foams the bubbles
undergo convective rolls provided the rate of added liquid exceeds a cer-
tain threshold (cf. 2.3), in emulsions flow instabilities can take the form of

density waves.*3

Fig. 7. Drainage wave passing through an emulsion of oil in water (the dashed lines
indicate the position of the wave front at successive times).3 In the case shown this
results in a high water volume fraction(¢ ~ 0.5) with agitated motion of the oil droplets.

2. Static properties

Different styles of modelling/simulation have been developed for static
structures and quasistatic properties. They include

o detailed representation of the structure (films, Plateau borders,
junctions);

e vertex models (not discussed here);

e soft sphere/disk models.

2.1. Structure

The first of the above models is a precise representation of foam structure,
after it has been idealised, primarily by treating the films as infinitesimally
thin.

In two dimensions this was accomplished for a dry foam by Weaire
and Kermode in 1984.97 Wet foam was similarly simulated by Bolton
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and Weaire®!? (cf Fig. 15). Nowadays the specifically developed codes
have been largely replaced by the 2D version of the Surface Evolver of
Ken Brakke.'® Equilibration is usually straightforward, but some ques-

Fig. 8. A 3D foam generated with Surface Evolver.

tions arise. What starting configuration is to be used? Most simulations
start from a rather arbitrary Voronoi partition, as this is convenient. Is the
resulting structure unique (for a given final topology)? The answer to the
second question appears to be no, in general, but yes in practice for typical,
finite samples.

Brakke’s Surface Evolver'® also provides the standard procedure for
equilibration in the case of 3D foams. Whereas the lines in 2D foams are
always circular arcs, no such simplification is available in 3D, and a fine
tessellation is needed to represent the surfaces. Helpful features of the
Surface Evolver package include calculation of the Hessian matrix and its
eigenvalues, which can help in characterising instabilities.%°

The chief practitioner of the application of this methodology to foams
has in recent years been Andy Kraynik. His extensive exploration of random
equilibrium structures of monodisperse foams®* has revealed a wide range
of possibilities, echoing the story of the various mondisperse hard-sphere
packings in the theory of granular materials. This has provided a vindi-
cation of old experimental work of Matzke,%° who laboriously assembled
foam samples by adding identical bubbles one at a time; he then analysed
their contents with even greater labour. Some of us distrusted the detailed
results of that unique effort, but Kraynik®* has now confirmed them.
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2.2. Crystallization

Early observations have been made by Bragg and others!3:14:47:59:60 of the

crystalline ordering of a 2D raft made of small bubbles (see Fig. 4). This
system has been used as an analogue to solid crystals and the interactions
between bubbles have been modeled accordingly by a short-range repul-
sion (due to the bubble distortion) and a long-range attraction (due to the
distortion of the water surface®).

Some recent developments have been made by extending Bragg’s bubble
raft concept into three dimensions. When the bubbles are typically smaller
than 500um, the Princen number becomes greater than 10, which allows
equilibrium samples of wet 3D foams, with more than 10 layers. Remark-
ably, it has been observed that these small bubbles order spontaneously in
three dimensions, with an apparent preference for FCC structure.®® The
existence of stacking faults, grain boundaries, dislocations, all phenomena
already identified in 2D bubble crystals, is yet to be investigated in detail.
This spontaneous ordering is not observed in emulsions and granular media.

Fig. 9. Crystalline structure of bubbles in 3D: (a) A photograph of the surface of the
foam. (b) A ray tracing simulation of a (111) fcc packing shows detailed agreement with
the experiment.8®

2.3. Drainage

Drainage is closely analogous to sedimentation of suspensions, gas trans-
port in fluidised beds, and water transport in wet soils. The liquid therefore
passes through an essentially static structure, in the manner of liquid trans-
port in a porous medium, but with an important difference. The local liquid
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fraction is not fixed but is to be determined to be consistent with liquid pres-
sures: the foam breathes liquid in and out, with a change in Plateau border
cross-sectional area. A simple dependence of rate of uniform flow (under
gravity) on liquid fraction is often found experimentally: the flowrate @
goes as ¢2. This is rationalised in terms of Poiseuille flow, a consequence
of high surface viscosity, so that the Plateau borders act as channels with a
no-flow condition at their surface. Some surfactants produce a low surface
viscosity instead, and a different theory is needed.??:53:91,94

The non-uniform flow through the foam can be described by the partial
differential equation

o 0 ( 1 gh+l/? —aﬁ’““)

ar 2k+1  O¢ 3)

or 5_5
where the parameter k characterizes the type of flow (¢ = 1 for Poiseuille
flow and ¢ = 1/2 for plug flow). Under forced drainage, the wetting front
takes the form of a solitary wave.”® There is some connection with wetting
fronts in soil mechanics, a branch of granular materials. In that field also,
solitary waves describe wetting and are the solutions of kinematic equations,
of a somewhat more complicated and uncertain form.

Furthermore a convective instability appears at high enough flowrate.*
This seems roughly similar to instabilities in fluidized beds, but has a sim-
pler form. It can also be compared to the convection rolls that appear in a
shaken granular media above a certain threshold of acceleration.” In the
unstable regime there is size segregation in polydisperse foams, with smaller
bubbles tending to collect at the bottom.*® This seems closely analogous to
similar effects in granular materials.'® The fact that the convective instabil-
ity occurs at a lower flow rate when the drainage column is tilted?* can be
seen as analogue to the Boycott effect in sedimentation of suspensions.!!:3!

3. Dynamic properties

3.1. Rheology
Continuum model

As in the case of drainage, rheology has been treated with continuum mod-
els (see e.g®93), most recently to analyse 2D shear experiments (see 3.2
and?*19). Instead of a detailed simulation, a coarse-grained description
proceeds in terms of fields that represent the local average of liquid frac-
tion, velocity, etc. Foam is a solid with well-defined elastic properties for
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low stress, but plastic at higher stresses, and it flows indefinitely above a
certain yield stress. This central property is shared with granular material.
Unlike the latter, foam has a very large elastic/plastic regime in terms of
the strain range that may be explored before the yield stress is reached.
There are simple formulae for elastic modulus and yield stress.

In common with granular material, avalanches of topological changes can

Prabability

0.2 —_I_ _I
o | | rad

1 ia i0a ib0a

Mumber of tepolagical changes

Fig. 10. Early data** showing avalanches of bubble rearrangements in wet foam due
to applied shear. Left: Bubbles that change their nearest neighbour relationship are
shaded. Right: The probability distribution of topological changes displays a long tail.

be observed (see Fig. 10), particularly in wet foams.** There should also
be force chains in the wet limit: they have been observed in simulations
by Durian,** but a method of detecting these experimentally has not been
devised.

Above the yield stress, i.e. once the foam flows, strain-rate dependent
effects must be taken into account. They have proved difficult to capture
convincingly in theory. The Bingham model is a useful heuristic device, in
which the yield stress is added to a term proportional to the strain rate, as
in a newtonian liquid. The effective viscosity can then be expressed as

o
Neft = T +Tp (4)

where o is the shear stress, ¢ the strain rate and 7, the plastic yield.

In reality, the introduction of a nonlinear viscous term (the Herschel-
Bulkley model) seems necessary, but its validity and precise origins need
to be explored. Note also that the Bingham model (eq. 4) applies only to
shear strain that varies monotonically.
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Fig. 11. Variation of effective viscosity with strain rate.

Soft-disk model

In the case of a wet foam, another approach at the bubble scale can be
useful. Douglas Durian investigated the rheological behaviour of a foam
made of spherical bubblest by modelling their interaction with a heuristic
model:33:3% the bubbles remain spherical but can overlap and repell each
other elastically. This soft disk or sphere model is also the base of molecular
dynamics simulations in granular materials and despite its simplicity has
proven very efficient in reproducing the main feature of dry granular flows.
However, the validity of this simple interaction model can be questioned.

B

Fig. 12. Left: Elastic interaction between overlapping bubbles. Right: Topological rear-
rangement in a 2D foam under shear (reprinted figure with permission from.3* Copyright
(1997) by the American Physical Society).

Theoretical calculations applied to special cases®®%%70 show that the true
interactions are neither quadratic nor additive, even in the limit in which the
bubbles are barely touching. In other words, the bubble-bubble potential
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depends on the confinement, and in particular the number of contacts of
each involved bubble. More general cases (in which the environment of each
bubble is not symmetrical) raise even greater problems, in any attempt to
put soft-sphere models on a firm foundation for foams.

Dissipation

Dynamic properties require models that include dissipation, and the work
of Durian brings these in straightforwardly by adding a viscous term to
the spring force, which can only be accepted as a heuristic device. The
true rate-dependent forces needed are very much a matter of debate, and
include both hydrodynamic contributions that do not scale in a simple way
(energy is dissipated due to shear flow of the viscous liquid within the soap
films and Plateau borders), and surface contributions.!”

In 2D there is another viscous force, of great importance. At least
whenever there is at least one plate involved, wall drag is very important,
and introduces effects not present in 3D foam, so the 2D model system
must be an unreliable guide to its dynamic properties.

What is the nature of this force ? This is the Bretherton problem,'®
which has been subject to numerous investigations, experimental, %37 the-
oretical?® and numerical®® (see also Fig. 13. Various power laws have been
derived, rather than a force which is simply linear in the bubble velocity rel-
ative to the wall. This nonlinearity arises from the dependence of the local
structure (in particular, the thickness of the film at the wall) on velocity.

position

0 1 2 3 4 onthewall

Fig. 13. Left: Section of a bubble in a tube as modeled by Bretherton.'® Right: De-
formation of the bubble and corresponding flow from numerical simulations.3°

3.2. Shear banding

Since the challenges of rheology and flow are so intractable, it is natural
to have recourse to 2D model systems as a starting point. In the case of
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foams this has been the strategy of (among others) the groups of Glazier,*

Graner?” and Cantat.!®
Amongst the main features, the phenomenon of shear-banding in
sheared granular materials has been widely investigated.3":38:42:48:61 9D
foam rheometers have been constructed by the groups of Debregeas®”
Dennin.5” In the first version, foam is sheared in a Couette (cylindrical)
geometry (Fig. 14). It shows strong shear banding, localised at the inner
boundary, with a velocity distribution decaying exponentially. The exis-
tence of a similar phenomenon in 3D is still subject to debate. Remaining
in 2D, several explanations have been proposed. An early and initially
convincing theory was based on a quasistatic description and detailed sim-
ulation;?° it is difficult to summarise, and remains problematical in several
respects.
A second and entirely different approach based on a continuum model

and

Fig. 14. From left to right: Experimental Couette setup for dry and wet foams; Ex-
ponential decrease of the tangential velocity across the gap (reprinted figures with per-
mission from.2” Copyright (2001) by the American Physical Society); Prediction of the
velocity profile by a continuum model.?3

leads naturally to the shear banding in agreement with qualitative obser-
23149 and to several further results that seem to validate the model
and have predictive power.

vation,

Not only is this an essentially dynamic model, but it includes as its
crucial ingredient the wall drag force which we have already pointed to as
important in 2D. Apart from that the foam is modeled with the elementary
Bingham model defined in section 3.1. The localisation length is determined
solely by the viscous coefficient, together with the coefficient of wall drag,
whereas neither coefficient appears in the previous theory.

All is not clear yet, but we seem to be on the road to a full understand-
ing. The comparison with granular experiments is intriguing (see the work
of Behringer in this volume). In the latter case, much is similar. While a
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wealth of fine detail has been observed and analysed but the broader ques-
tions remain. Could the continuum model be relevant here? Experimental
tests might help to resolve that question.

3.3. Dilatancy

A recurrent theme in the description of granular materials is dilatancy, but
it is often as vague as in Reynolds’ original and confusing accounts of it.7
It requires some clarification in seeking its analogue in foams. Very loosely,
we may say that dilatancy is the tendency to expand when a material is
sheared. But shearing may be static (elastic or partly plastic) or dynamic,
above the yield stress. It would seem that we must at least distinguish
elastic and dynamic dilatancy.

In foams there is a quite well defined range of elastic distortion which can
be well described by simulation and theory. It therefore offers the oppor-
tunity for an analysis of elastic dilatancy which presents little uncertainty.
This was undertaken by Weaire and Hutzler,””6 using 2D simulations. It
should be noted that elastic dilatancy fits within the classical theory of
elasticity, being merely a third-order effect; in general it is of arbitrary
sign. Indeed it was found to be negative in the theory for dry 2D foams.
The analogy with granular materials is to be found in wet foams: the ef-
fect rapidly becomes positive as liquid fraction increases. We may quantify
the effect in a manner that is suggestive of possible experiments by asking:
what is the difference of liquid fraction between two samples of which one
is under static elastic shear, the other not, with contact between the two?
The answer given was that the difference has a maximum of a few percent,

AT¢ 1
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Fig. 15. From left to right: Computer simulations of a two-dimensional foam with
liquid fraction ¢ = 0.07 using the software PLAT:? (a) unstrained; (b) under extensional
strain e = 0.23; Variation of shear modulus with liquid fraction.%¢
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halfway towards the wet limit (i.e. a liquid fraction of fifteen to twenty
percent). Gravity complicates experimental design and the prediction is
not as yet confirmed by measurement.

Nothing has been predicted for dynamic dilatancy but it also seems a
good candidate for measurement. In the case of granular materials, it is
to be associated with the name of Bagnold,® since his measurements were
indeed for the dynamic case, and even produced a variation of dilatancy
with shear rate. However, a recent critical review of this is skeptical.*! In
parallel with other attempts to make sense of foams above the yield stress,
this presents another opportunity for experiment and for comparison with
granular materials.

4. Bubbles as soft grains ?

Recently, Vanderwalle et al.”?! revived the analogy between wet foams
and granular materials by investigating bubble flows in the classical con-
figuration of a 2D flow through a narrow aperture.®4%%7 To maintain a
high liquid fraction in the foam it is necessary to avoid drainage and thus
to keep the effective gravity low enough by confining the bubbles under
a slightly inclined plate (Fig. 16). Within this setup, the small bubbles
remain roughly spherical and move independently, thus behaving like de-
formable grains. Whereas in the case of granular media the grains undergo

inclined CCD
plane Q camera
air bubbles ® /

Fig. 16. Experimental observation of the flow of bubbles through a narrow aperture
(reprinted figures with permission from.” Copyright (2006) by the American Physical
Society).

solid friction and can therefore form contact arches, the bubbles experience
only viscous forces. Thus Beverloo’s law giving the flow rate ) as a function
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of the particle size d and the aperture D reads differently:”
g'/? (D — kal)l/2 for solid grains

(gsing)3/2 (& — k)1/2 for bubbles
In Trinity College Dublin, another classical experiment for granular me-
dia has been reproduced with small bubbles: a monolayer of small bubbles

is confined under a tilted rotating plate, thus forming a 2D rotating tum-
bler. This type of flow can be simulated by adapting Durian’s soft disk
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Fig. 17. Bubbles in a rotating drum: experimental setup, snapshot of the bubbles
during rotation, and numerical simulation.3¢

model and incorporating bubble inertia and wall friction. The viscous dis-
sipation experienced by a single spherical bubble sliding along a plate has
been investigated by Aussillous and Quéré,® who identified both Stokes and
Bretherton components:

Fy=anVr+ lm"yl/B(r]V)erQ (6)

where 7 is the dynamic viscosity of the bulk fluid, V' the velocity of the
bubble, k= ! the capillary length and r the bubble radius. An important
question is whether this formula, in particular the term for bulk friction,
remains valid in the case of a system of bubbles.

5. Seeing inside foams (Computed Tomography)

The dynamics and evolution of 2D foam structure are generally under-
stood32:86:99 since the foam structure can be directly seen and dynamical
processes (such as T1 and T2 transformations) are easier than the three
dimensional ones to visualize and understand. In 3D, however, the chal-
lenge is to see and characterize the full inner structure of the foams which
is not immediately visible from outside. Many techniques, primarily based
on direct imaging, have been developed over the past few decades to probe
the internal microstructure of complex materials.?""® Direct measurement
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of the 3D structure of porous materials is now readily available from syn-
chrotron and X-ray Computed Tomography (CT). These techniques provide
the opportunity to measure experimentally the complex morphology of the
microstructure of materials in three dimensions, in a non-invasive way, at
resolutions down to a micron. One can then base calculations directly on
the measured three-dimensional microstructure.?326.63

Granular materials

In recent years, X-ray CT has been employed in the field of granular ma-
terials to characterize the granular structure of single-sized hard spherical
beads.?376:81:82 This has allowed the researchers, for the first time, to in-
vestigate the static geometry of large packings of up to 150,000 monosized
hard spheres (See Fig. 18 and?). Attempts are under way to study the dy-
namics of the compaction process of elastic and deformable beads in three-
dimensions, a close analog to 3D wet foams, using X-ray tomography (see
the paper of Saadatfar and others in this volume). This might shed light
onto the understanding of topological changes of amorphous microstruc-
tured materials responding to applied stress, which bears close analogy
with the deformation of 3D liquid foams (Fig. 18).

Fig. 18. Left: Reconstruction of a packing of 150,000 hard spheres obtained from to-
mography.? Right: A 2D slice through the tomogram of a 3D packing of deformable
rubber balls.
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Cellular Solids

The physical and mechanical properties of cellular solids are a direct con-
sequence of their complex microstructure. Linking properties to structure
will lead to an understanding of how cellular solids can be optimised for
given applications. This goal can be achieved by utilizing tomography to
acquire the density map of the specimens (See Fig. 19 and™). Indeed, the
manufacturing process of both open and closed cell foams are very similar
to the packing of spheres in 3D as can be immediately deduced from figure
19.

Fig. 19. Images of open-cell aluminium foam (left) and close-cell polyurethane foam
(right) obtained by tomography.”®

Aqueous foams

In the realm of aqueous foams, the first experimental investigation of a
3D analog of von Neumann’s law was carried out by means of optical to-
mography.%® The purpose of this experiment was to study foam structure
and dynamics simultaneously by investigating morphology, topology, and
dynamics of a 3D foam. Most recently X-ray tomography was used to
study the evolution of initially 7000 bubbles in foams with liquid fraction
¢ between 0.1 and 0.2 percent.’® The main aim of such work is the de-
termination of a growth law for bubbles, i.e. how/whether the number of
faces of a bubble determines whether the bubble will shrink or grow during
coarsening.
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6. Conclusions

Drawing an analogy between foams and granular materials is certainly
tempting and rewarding, and currently also en vogue, as exemplified by
the publication of popular science books*%? combining both themes (a col-
lection of original articles on granular systems, foams, emulsions and su-
pensions can be found in®%).

However, care needs to be taken when trying to pursue this analogy
in great detail. The interactions between soft bubbles and hard grains
are different, and in both cases not yet sufficiently understood. Idealised
simulations and toy models have proved instructive, but the time has come
to rebuild the foundations of the subject on more solid grounds. This is
especially the case whenever dynamic effects are considered.
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